Treatment of superior labrum anterior posterior lesions: a literature review

Gazi HURI, Yoon Suk HYUN, Nickolas G. GARBIS, Edward G. McFARLAND

Department of Orthopedic Surgery, The Johns Hopkins University, Baltimore, Maryland, United States

Objective: Treatment of superior labrum anterior posterior (SLAP) lesions continues to be controversial, but with the development of suture anchors, it has become acceptable to repair these lesions arthroscopically. The aim of this study was to review recent trends in the evaluation and treatment of SLAP lesions, with particular emphasis on comparing the results of biceps tenodesis and SLAP repair.

Methods: All English language publications from the PubMed, Cochrane, and SCOPUS databases between 1928 and 2012 on biceps tendon, SLAP lesions, and biceps surgery were reviewed. Literature was reviewed in table form because of the lack of Level 1 studies.

Results: Surgical repair can have complications and may not return overhead athletes to their previous level of activity. Biceps tenodesis has become the preferred primary procedure in non-athletic individuals because of the high failure rate of SLAP repair. In patients with continuing symptoms after SLAP lesion repair, biceps tenodesis offers a more predictable operation than a second repair attempt.

Conclusion: Biceps tenodesis may present a viable treatment option for SLAP repair or for failed SLAP repair in some patients.

Key words: Biceps; pain; shoulder; SLAP; treatment.

Superior glenoid labral tears involving the long head of the biceps were initially described in 1985 by Andrews et al.,[1] who noted an association between the tearing of the labrum and throwing athletes. In 1990, Snyder et al.[2] published a description of these injuries as superior labrum anterior posterior (SLAP) lesions and proposed a classification system that divided them into 4 subtypes on the basis of the amount of damage to or destabilization of the biceps anchor. The Snyder classification system (Fig. 1) is commonly used by clinicians for the evaluation and treatment of these lesions. Subsequently, Maffet et al.[3] described 3 additional types of SLAP tears in 1995. The classification has since been expanded to 10 distinct types of SLAP tears in the literature (Table 1).[4]

The prevalence, associated abnormal findings, and clinical features of the different types of SLAP lesions vary with the patient population.[5] Type 1 lesions are typically associated with rotator cuff disease and are generally not known to create any clinical symptoms. Type 3 and 4 lesions have been found to be associated with traumatic instability.[5] The clinical features of Type 2 lesions differ according to the patient’s age. Type 2 lesions in patients over 40 years of age have clinical features similar to those of Type 1 lesions, probably in part because of concomitant lesions in the shoulder. Type 2 lesions in patients less than 40 years old have clinical features that are closer to those of Type 3 and 4 lesions in that they can produce pain and clicking.
As shoulder arthroscopy led to a better understanding of these lesions, surgical repair became more popular. Early techniques such as the use of metal or absorbable tacks have evolved to suture anchors and advanced arthroscopic instrumentation, establishing surgical repair as the accepted treatment for SLAP lesions. However, it has become apparent that the clinical results of SLAP repair can be compromised by complications and that the ability to return to sport may not be as high as previously believed. As a result, there has been increasing interest in the role of biceps tenodesis for the treatment of symptoms believed to be secondary to SLAP lesions.

The aim of this study was to review recent trends in the evaluation and treatment of SLAP lesions with particular emphasis on comparing the results of biceps tenodesis and SLAP repair. All English language publications from the PubMed, Cochrane, and SCOPUS databases between 1928 and 2012 on biceps tendon, SLAP lesions, and biceps surgery were reviewed. All SLAP lesion studies presented the results of Type 2 lesion repair and also included Type 3 and Type 4 lesion repair. We excluded of the 11 biceps tenodesis articles as they described the results of tenodesis secondary to degeneration or tendinitis. Finally, a meta-analysis or systematic review was not performed and the 28 studies were reviewed in table form due to the lack of Level 1 studies.

Physical examination of superior labrum anterior posterior lesions

The use of history and physical examination in the diagnosis of SLAP lesions continues to be difficult. For several reasons, history alone does not typically provide sufficient evidence for diagnosis. Studies have shown that SLAP lesions can be caused by a variety of mechanisms, including acute trauma (e.g., falls on an outstretched arm) and insidious processes (e.g., overhead activity such as throwing). The pain pattern produced by a SLAP lesion is likewise non-specific, although pain in the posterior and superior glenoid is common in patients with SLAP tears. Unfortunately, posterior shoulder pain can also be indicative of shoulder stiffness. Additionally, isolated SLAP lesions are uncommon, and many patients have other coexisting abnormalities. As a result, it is common for patients with SLAP lesions who have rotator cuff abnormality to have pain in the anterior and lateral shoulder or anteriorly in the area of the biceps tendon.

Several sources have reported difficulty in the physical examination of the shoulder for SLAP lesions. There are several reasons for this difficulty. First, the labrum only rarely produces clicking or catching in the shoulder, similar to meniscus in the knee. Although one study found a 5% incidence of a click on examination of patients with SLAP lesions, this rate was no different in the control group without SLAP lesions. Second, coexisting abnormalities can complicate the physical examination. Because it is difficult to find a cohort of patients with isolated SLAP lesions and no other abnormalities,

Table 1. Definition of the types of SLAP lesions.

<table>
<thead>
<tr>
<th>Type</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 1</td>
<td>Fraying or tear of SL with intact BT</td>
</tr>
<tr>
<td>Type 2</td>
<td>SL tear and BT stripping</td>
</tr>
<tr>
<td>Type 3</td>
<td>Bucket-handle tear of SL and intact BT</td>
</tr>
<tr>
<td>Type 4</td>
<td>Bucket-handle tear of SL and extension of tear to BT</td>
</tr>
<tr>
<td>Type 5</td>
<td>Bankart lesion, SL tear, and BT stripping</td>
</tr>
<tr>
<td>Type 6</td>
<td>Anterior/posterior flap tear and BT stripping</td>
</tr>
<tr>
<td>Type 7</td>
<td>SL tear, BT stripping, and middle glenohumeral ligament tear</td>
</tr>
<tr>
<td>Type 8</td>
<td>SL tear and posteroinferior labral tear</td>
</tr>
<tr>
<td>Type 9</td>
<td>SL tear with extensive anterior and posterior extension</td>
</tr>
<tr>
<td>Type 10</td>
<td>SL tear with extension to the rotator interval or to the structures that cross the rotator interval</td>
</tr>
</tbody>
</table>

BT: biceps tendon; SL: superior labrum.

Fig. 1. Artist’s illustration of the Snyder classification of SLAP tears. (a) Type 1 SLAP lesion. (b) Type 2 SLAP lesion. (c) Type 3 SLAP lesion. (d) Type 4 SLAP lesion. (Reprinted with permission from: Snyder SJ, Karzel RR, Del Pizzo W, Ferkel RD, Friedman MJ. SLAP lesions of the shoulder. Arthroscopy 1990;6:274-9).
most studies of the examination for SLAP lesions cannot ascribe a positive test only to a SLAP lesion. Third, no one physical finding has been found to be specific to SLAP lesions. Many physical examination tests for SLAP lesions have been described,[21,23,24] including the active compression test,[25] anterior slide test,[26] biceps load test,[27] crank test,[28] biceps load test 2,[29] and the dynamic shear test.[30] However, most analyses have confirmed that their clinical usefulness is limited by their low specificity and moderate sensitivity.[9,31] As a result, no one single test or combination of tests will reliably make the diagnosis.

However, a more recent test has shown promise for the diagnosis of a SLAP lesion: the dynamic shear test. [32] This test is performed with the patient in the standing position and the examiner alongside the extremity to be tested (Fig. 2). The patient’s elbow is passively flexed to 90° with the shoulder abducted in the scapular plane to more than 120° by the examiner. The patient’s shoulder is externally rotated to tightness, and the arm is guided into maximum horizontal abduction. The examiner then imparts an anteriorly directed shear load to the joint via lowering the arm from approximately 120° to 60° of abduction. A positive test is indicated by the reproduction of pain and/or painful click or catch between the motion of 120° and 60° of abduction. Kibler et al.[32] suggested a likelihood ratio of 30 for SLAP, making it highly diagnostic for SLAP lesions. However, Cook et al.[7] found that the dynamic shear test was not clinically useful in diagnosing SLAP lesions.

Most experts agree that diagnostic arthroscopy is the most accurate way to reach a diagnosis of SLAP lesion.[33-37] There have been several studies indicating that disagreement among observers on the exact grade of the SLAP lesion is possible, even with arthroscopy.[25,26,38,39] However, a recent study by Jia et al.[40] found that experienced shoulder surgeons have high agreement on the classification of the SLAP lesion. Despite this finding, 2 studies found that despite the agreement on the type of SLAP lesion, there is little uniformity on how they should be treated.[10,41]

Surgical results

The primary indication for surgical treatment of SLAP lesions is the failure of non-operative treatment and persistent symptoms that prevent sports activities or activities of daily living. Traditional surgical treatment of SLAP lesions consists of repairing the biceps anchor back to the superior glenoid rim with suture anchors. [42,43] Initial reports suggested that the success rate was high in terms of pain relief and return to sport (Table 2).[6,12,14,15,42,44-58] Morgan et al.[54] published the 1-year outcomes of repair in 102 Type 2 lesions. They reported good to excellent results according to the University of California Los Angeles Shoulder Score in 97% of patients, and 84% (37 of 44) of overhead athletes returned to pre-injury activities. Samani et al.[56] reported a success rate of 88% using an absorbable tack to repair Type 2 SLAP lesions, even in athletes with high demands and expectations. Kim et al.[53] reported a satisfaction rate of 94% after SLAP lesion repair but noticed significantly less favorable results after isolated repairs in patients who participated in overhead sports than in those who did not. In another study, only 16 of 31 patients treated with a trans-rotator cuff approach returned to their pre-injury level of sports, a 74% of satisfaction rate.[55] Similarly, Brockmeier et al.[45] reported a mean American Shoulder and Elbow Surgeons score of 92.6 in an athletic population in which only 74% returned to pre-injury level. Kartus et al.[51] encouraged the use of one double-looped CORKSCREW anchor for Type 2 SLAP repairs. The authors reported significant improvements (p<0.05) in activities of daily living compared with the preoperative assessments. Ide et al.[42] reported the longest previous follow-up (mean: 41 months; range: 24 to 58 months) of arthroscopic suture anchor repair of Type 2 SLAP lesions. A good or excellent outcome was reported in 90% of their 41 patients, and 75% of the patients returned to pre-injury activities. Schrøder et al.[12] compared the long-term results after SLAP repair in patients more than and less than 40 years of age (mean follow-up: 5.3 years; range: 4 to 8 years). Regardless of the age of their
107 patients, they reported a satisfaction rate of excellent/good in 90 (88%) patients, with higher Rowe scores at 5 years. In contrast, Denard et al.[8] found poor results (mean follow-up: 77 months; range: 37 to 104 months) after arthroscopic repair of Type 2 SLAP lesions in patients more than 40 years of age.

In general, more than 83% of patients were satisfied with the surgery, and 73% of patients could return to their previous level of activity.[11] These statistics led to the enthusiastic repair of these lesions with a myriad of techniques and anchors developed for this purpose.

Table 2. Studies in the literature on SLAP repairs.

<table>
<thead>
<tr>
<th>Study</th>
<th>Study Type</th>
<th>Number of Patients</th>
<th>Mean Age (years)</th>
<th>Follow-up (months)</th>
<th>Treatment</th>
<th>ASES Score (points)</th>
<th>UCLA Shoulder Score (points)</th>
<th>Satisfaction (%)</th>
<th>L’Insalata Score (points)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yoneda et al.[57] (1991)</td>
<td>R</td>
<td>10</td>
<td>17.8</td>
<td>37.4</td>
<td>Repair (staple)</td>
<td>N/A</td>
<td>N/A</td>
<td>80</td>
<td>N/A</td>
</tr>
<tr>
<td>Morgan et al.[54] (1998)</td>
<td>R</td>
<td>102</td>
<td>N/A</td>
<td>12</td>
<td>Repair</td>
<td>N/A</td>
<td>N/A</td>
<td>97</td>
<td>N/A</td>
</tr>
<tr>
<td>Samani et al.[56] (2001)</td>
<td>R</td>
<td>25</td>
<td>36</td>
<td>35</td>
<td>Repair</td>
<td>92</td>
<td>32</td>
<td>88</td>
<td>N/A</td>
</tr>
<tr>
<td>Kim et al.[58] (2002)</td>
<td>R</td>
<td>34</td>
<td>26</td>
<td>33</td>
<td>Repair</td>
<td>N/A</td>
<td>Overhead: 32.6</td>
<td>94</td>
<td>34.3</td>
</tr>
<tr>
<td>O’Brien et al.[52] (2002)</td>
<td>R</td>
<td>31</td>
<td>39</td>
<td>44.4</td>
<td>Repair</td>
<td>87.2</td>
<td>N/A</td>
<td>74</td>
<td>87</td>
</tr>
<tr>
<td>Kartus et al.[51] (2004)*</td>
<td>P</td>
<td>15</td>
<td>36</td>
<td>25</td>
<td>Repair</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Ide et al.[40] (2005)</td>
<td>R</td>
<td>40</td>
<td>24</td>
<td>41</td>
<td>Repair</td>
<td>N/A</td>
<td>N/A</td>
<td>90</td>
<td>N/A</td>
</tr>
<tr>
<td>Rhee et al.[53] (2005)</td>
<td>R</td>
<td>41</td>
<td>24</td>
<td>33</td>
<td>Repair</td>
<td>N/A</td>
<td>32.3</td>
<td>86</td>
<td>N/A</td>
</tr>
<tr>
<td>Cohen et al.[60] (2006)</td>
<td>P</td>
<td>39</td>
<td>34</td>
<td>44</td>
<td>Repair</td>
<td>86.8</td>
<td>N/A</td>
<td>71</td>
<td>86.7</td>
</tr>
<tr>
<td>Enad et al.[43] (2007)</td>
<td>R</td>
<td>36 (A: 18 isolated; B: 18 associated injury)</td>
<td>31.6</td>
<td>A: 29.1</td>
<td>Repair</td>
<td>A: 84.1</td>
<td>32</td>
<td>94 (both)</td>
<td>N/A</td>
</tr>
<tr>
<td>Franceschi et al.[46] (2008)</td>
<td>P</td>
<td>63</td>
<td>>50</td>
<td>64.2</td>
<td>Repair</td>
<td>31 (repair)</td>
<td>32.1 (tenot)</td>
<td>4.6 (tenot)</td>
<td>N/A</td>
</tr>
<tr>
<td>Yung et al.[39] (2008)</td>
<td>P</td>
<td>16</td>
<td>24.2</td>
<td>27.6</td>
<td>Repair</td>
<td>N/A</td>
<td>31.3±3.7</td>
<td>87.5</td>
<td>N/A</td>
</tr>
<tr>
<td>Brockmeier et al.[45] (2008)</td>
<td>P</td>
<td>16</td>
<td>24.2</td>
<td>27.6</td>
<td>Repair</td>
<td>N/A</td>
<td>100</td>
<td>No</td>
<td>N/A</td>
</tr>
<tr>
<td>Katz et al.[47] (2009)</td>
<td>R</td>
<td>40</td>
<td>43</td>
<td>N/A</td>
<td>Repair</td>
<td>N/A</td>
<td>93</td>
<td>95 (<40)</td>
<td>N/A</td>
</tr>
<tr>
<td>Alpert et al.[48] (2010)</td>
<td>R</td>
<td>52</td>
<td>55 (>40)</td>
<td>28</td>
<td>Repair</td>
<td>86 (>40)</td>
<td>N/A</td>
<td>84 (>40)</td>
<td>N/A</td>
</tr>
<tr>
<td>Friel et al.[49] (2010)</td>
<td>P</td>
<td>43</td>
<td>33.1</td>
<td>40.8</td>
<td>Repair</td>
<td>83.3</td>
<td>30.9</td>
<td>79</td>
<td>N/A</td>
</tr>
<tr>
<td>Denard et al.[50] (2012)</td>
<td>R</td>
<td>55</td>
<td>37.9</td>
<td>77</td>
<td>Repair</td>
<td>86.2</td>
<td>31.2</td>
<td>87</td>
<td>N/A</td>
</tr>
<tr>
<td>Schroeder et al.[51] (2012)</td>
<td>P</td>
<td>107</td>
<td>43.8</td>
<td>63.6</td>
<td>Repair</td>
<td>N/A</td>
<td>N/A</td>
<td>88</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Table 3. Studies in the literature on biceps tenodesis.

<table>
<thead>
<tr>
<th>Study</th>
<th>Number of Patients</th>
<th>Mean Age in Years (range)</th>
<th>Follow-up Time (months)</th>
<th>Rating Scale</th>
<th>Satisfaction (%)</th>
<th>Poor Outcome (%)</th>
<th>Excellent/Good Outcome (%)</th>
<th>Popeye Sign (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Boileau et al.[52] (2002)</td>
<td>43</td>
<td>N/A</td>
<td>N/A</td>
<td>Constant</td>
<td>90 (strength of other side)</td>
<td>4.6 (re-operated)</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Osbahr et al.[71] (2002)</td>
<td>80</td>
<td>54 (23-76)</td>
<td>20 (3-50)</td>
<td>Pain</td>
<td>N/A</td>
<td>10</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>Checchia et al.[72] (2005)</td>
<td>15</td>
<td>71 (41-80)</td>
<td>32.4</td>
<td>UCLA</td>
<td>93.4</td>
<td>6.6</td>
<td>93</td>
<td>6</td>
</tr>
<tr>
<td>Franceschi et al.[73] (2007)</td>
<td>22</td>
<td>60.3 (41-79)</td>
<td>47.2</td>
<td>UCLA</td>
<td>100</td>
<td>0</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>Drakos et al.[74] (2008)</td>
<td>40</td>
<td>38.5 (15-67)</td>
<td>28</td>
<td>ASES, UCLA, L’Insalata</td>
<td>80</td>
<td>5</td>
<td>92</td>
<td>5</td>
</tr>
<tr>
<td>Boileau et al.[75] (2009)</td>
<td>15</td>
<td>52 (19-57)</td>
<td>34</td>
<td>Constant</td>
<td>93</td>
<td>N/A</td>
<td>93</td>
<td>N/A</td>
</tr>
<tr>
<td>Koh et al.[76] (2010)</td>
<td>43</td>
<td>65 (55-77)</td>
<td>27</td>
<td>ASES, Constant</td>
<td>84</td>
<td>5</td>
<td>84</td>
<td>9</td>
</tr>
<tr>
<td>Schöffl et al.[77] (2011)</td>
<td>6</td>
<td>36 (28-50)</td>
<td>24</td>
<td>Constant</td>
<td>96.8</td>
<td>0</td>
<td>N/A</td>
<td>No</td>
</tr>
</tbody>
</table>

N/A: not available; ASES: American Shoulder and Elbow Surgeons Score, UCLA: University of California Los Angeles Shoulder Score.
more than 1 year after arthroscopic repair of their Type 2 SLAP lesions. The authors emphasized that almost half of the patients were able to return to their pre-injury level of competition. Similarly, Boileau et al.[59] compared the outcome of Type 2 SLAP repair (10 patients) with that of biceps tenodesis (15 patients) in a Level 3 cohort study. Although the Constant score in both groups increased after surgery (65 to 83 in the SLAP repair group compared with 59 to 89 in the biceps tenodesis group), the percentage of satisfied patients in the tenodesis group was much higher (87%) than that in the repair group (40%). In addition, the percentage of patients returning to their previous level of sports was higher in the tenodesis group (87%) than in the SLAP repair group (20%).

Postoperative stiffness after SLAP repair has been found to have a variety of causes. In repair of the anterior and superior labrum, tightening of the middle glenohumeral ligament can occur, particularly in cases in which a sublabral hole was also repaired. This tightening has been shown to decrease external rotation, especially with the arm at the side.[61,62] Another cause of stiffness is the prolonged immobilization needed to allow healing of the labrum. Rehabilitation protocols for patients after SLAP repair often include immobilization of the shoulder for 3 to 4 weeks or longer to protect the repair, and this length of immobilization can result in global loss of motion and stiffness.

Continued pain after SLAP repair is difficult to assess because of the variety of potential causes. The usual cause of postoperative pain is shoulder stiffness, although lack of healing of the labrum is also possible. Several studies have suggested that the healing rate of a SLAP repair is only 70% to 80%.[5,42,61] It is also possible that a particular surgery did not adequately address the other coexistent abnormalities, such as partial- or full-thickness rotator cuff tears. In addition, as acromioclavicular joint pain can be mistaken for SLAP lesion pain,[63] patients for whom repair of a SLAP lesion has failed should be carefully assessed for other abnormalities. Unfortunately, physical examination or magnetic resonance imaging may not localize the cause of the pain after a failed SLAP repair. Diagnostic injection of local anesthetic into the joint, subacromial space or acromioclavicular joint may help isolate the source of the pain, but this modality has not been adequately studied to provide sound clinical guidelines as its effectiveness. These variables can lead to a situation in which the only remaining option is to re-operate to determine the cause of the continued pain.

Because of the high failure rate of SLAP repairs, there is an increasing appreciation that biceps tenodesis or tenotomy may be an acceptable treatment for SLAP lesions. In addition, this technique has now become the preferred treatment for failed SLAP repairs.[64]

In general, the results following biceps tenodesis for various abnormalities of the biceps tendon have been favorable, with good pain relief in 11.7% to 87% of patients and satisfaction rates of 93% to 96.8% (Table 3).[16-18,59,65-71]

The indications for biceps tenodesis as the index procedure for a symptomatic SLAP lesion depend on the patients’ age, activity level, arm dominance, and type of sport. It is commonly recommended that SLAP lesions in athletic individuals who are involved in overhead sports such as tennis, baseball, team handball, or volleyball be repaired. In older individuals who are laborers or who have concomitant rotator cuff tears, tenodesis or tenotomy is the treatment of choice. The age at which one would consider tenodesis or tenotomy over repair in athletic individuals is controversial. Although there is no consensus on what age should be the cut-off for repair versus tenodesis, 4 studies have suggested that SLAP repair should not be considered in individuals over the age of 40.[8,13,50,72]

Summary
The evaluation and treatment of SLAP lesions of the shoulder continues to be controversial. Physical examination is generally inexact and cannot reliably confirm the diagnosis of a SLAP lesion, although the dynamic shear test has shown some promise in making the diagnosis. Surgical repair of a SLAP lesion with a grade higher than Type 1 has been shown to be less successful than initially reported, and dissatisfaction with the results has led to an increased use of biceps tenotomy or tenodesis as the initial treatment, especially in the older individual with rotator cuff disease. The role of biceps tenodesis or tenotomy in the overhead athlete is controversial, and the use of SLAP repair in this population remains uncertain.

Conflicts of Interest: No conflicts declared.

References
3. Maffet MW, Gartsman GM, Moseley B. Superior la-

69. Franceschi F, Longo UG, Ruzzini L, Papalia R, Rizzello G, Denaro V. To detach the long head of the biceps tendon after tenodesis or not: outcome analysis at the 4-year follow-up of two different techniques. Int Orthop 2007;31:537-45. CrossRef

