Plantar fibromatosis is a benign but infiltrative neoplasm, presenting as a slow-growing nodular thickening most often within the central band of the plantar aponeurosis. In this case report, we presented a 43-year-old male patient who had a tender nodule in the sole of the right foot for two years. On magnetic resonance images, the location and signal intensity characteristics of the lesion were suggestive of plantar fibromatosis, which was histologically confirmed following an incisional biopsy. Magnetic resonance imaging is a noninvasive method for confirmation of the clinical diagnosis of plantar fibromatosis and also has an important role in planning surgical treatment by delineating the extent of the lesion.

Key words: Fibroma/pathology/radiography; foot diseases/pathology/radiography; magnetic resonance imaging; soft tissue neoplasms/pathology.

Although the etiology of plantar fibromatosis is unknown, an increased incidence has been reported with hyperlipidemia, diabetes, chronic liver disease, and seizure disorders. A family history has been reported in 13% of patients, suggesting an inherited risk. Also trauma may be an inciting cause in genetically predisposed patients.

Magnetic resonance imaging (MRI) is an especially useful modality in terms of planning surgical treatment by showing the exact location and extent of the lesion.
Case report

A 43 year old male patient applied to the orthopedics clinic complaining of a tender nodule in the sole of his right foot and was referred for an MRI examination. Personal history presented diabetes mellitus and hyperlipidemia, and no significant finding was found in his familial history and physical examination. He only complained of this very slowly enlarging nodule which had existed for 2 years.

In MRI examination, sagittal and axial plane SE (spin-echo) T_1 and FSE (fast spin-echo) fat-suppressed T_2 weighted; following intravenous contrast agent (gadolinium DTPA) post-contrast SE T_1 weighted images were obtained by a 1.5 tesla superconducting magnet. A soft tissue nodule of $3.3 \times 3.2 \times 2.2$ cm dimensions was detected on the aponeurosis level in close proximity to the plantar surface of the intersec muscles on these images. This lesion presented isointense signal intensity with the adjacent muscles on the T_1 weighted images (Figure 1a, b), but showed hyperintensity on the T_2 weighted images. (Figure 1c). There was no contrast enhancement on the SE T_1 weighted images following intravenous contrast administration.

The pathological examination of the material obtained by incisional biopsy from the lesion supported the diagnosis of plantar fibromatosis.

Figure 1. a) Sagittal SE T_1 weighted image showing nodular mass of $3.3 \times 3.2 \times 2.2$ cm dimensions similar signal intensity with adjacent muscles in the plantar aponeurosis level. b) Axial SE T_1 weighted image showing nodular lesion of sointense signal with the muscle. c) Axial FSE fat-suppressed T_2 weighted image showing mass of heterogenous high signal intensity.
Discussion

In 1897 Ledderhose demonstrated that plantar fibromatosis presents similar histological features with the Dupuytren contracture fibromatosis appearing in the hand. In plantar fibromatosis cases, it has been reported that there is an approximate 28% occurrence of Dupuytren contracture in the hand.

Plantar fibromatosis typically presents as a well-demarcated nodular thickening over the medial band of the plantar fascia. This nodule may be adherent to the overlying skin and single (70%) or multiple (30%). Nodules may be bilateral in 13% of patients. In our case, there was a single nodule in the sole of the right foot.

There are two stages of this lesion, namely early and late. The fibroblastic activity which develops in the active stage results in cellular and perivascular proliferation with infiltration thus leading to nodularity, pain and tension in the sole of the foot. In later stage, as the fibrosis progresses, a hard and well-demarcated fibrous nodule develops.

In plantar fibromatosis, direct roentgenogram reveals a nonspecific soft tissue mass. In ultrasonography, a nonhomogenous soft tissue mass is observed which has isoechogenity with the surrounding muscles. On CT, a nodular lesion of soft tissue density is seen as well.

Logan et al reviewed the common radiographic appearances of benign soft tissue tumors of the foot. In this study, plantar fibromatosis appeared as a nodular thickening of the soft tissues superficial to the plantar fascia with low signal intensity on T1 weighted images, low to intermediate signal intensity on T2 weighted images, and high signal intensity on fat-suppressed sequences.

The high content of collagen may explain the low signal intensity characteristic of plantar fibromas on T2 weighted images. In some cases, following intravenous contrast administration, some enhancement may be observed. It has been reported that this enhancement is related to the histological stage and appears in the early stage plantar fibromatosis. In our case, the fact that the complaints had been going on for two years may account for the lack of contrast enhancement due to the lesion being in the late stage.

Morrison et al conclude that the consistency of location and the unique signal intensity characteristics allow diagnosis of plantar fibromatosis with reasonable confidence by MRI alone, with the rare exception of clear cell sarcoma of the foot, which may have a similar radiographic appearance.

In foot plantar fibromatosis, it has been reported that the location and extension of the lesion can be specifically defined through MRI, thus rendering it possible for surgical excision and also diminishing the risk of surgery. Although the differential diagnosis should cover ganglion, neurofibroma and fibrosarcoma, these pathologies can be easily distinguished because they present high signal intensity especially on T2 weighted images. However, there are two exceptions where MRI can not be helpful in differentiating plantar fibromatosis due to similar signal intensity characteristics: one of these pathologies is clear cell sarcoma which frequently occurs in the vicinity of the foot and ankle tendons and aponeuroses, and the other is desmoid tumor (aggressive fibromatosis) which presents as a poorly defined, nonhomogenous soft tissue lesion and is accepted to be a benign fibrous proliferation. Biopsy is recommended for definite diagnosis if clinically aggressive (infiltrative rather than nodular) fibromatosis or clear cell sarcoma are suspected.

The most preferred treatment of plantar fibromatosis is local excision. However, since recurrence has been observed in some cases in spite of surgical resection, recently chemotherapy (methotrexate) and radiotherapy are being considered in addition to surgical resection.

In conclusion, we can say that MRI can be used as a noninvasive method for confirmation of the clinical diagnosis of plantar fibromatosis and has an important role in planning surgical treatment by delineating the extent of the lesion.

References
2. Aluisio FV, Mair SD, Hall RL. Plantar fibromatosis: treat-
ment of primary and recurrent lesions and factors associated with recurrence. Foot Ankle Int 1996;17:672-8.